Now Reading
Of Small Steps and Giant Leaps of Collective Imagination

Of Small Steps and Giant Leaps of Collective Imagination

Is the M5 cluster of stars really out there? Credit: HST, ESA, NASA
Is the M5 cluster of stars really out there? Credit: HST, ESA, NASA
Is the M5 cluster of stars really out there? Credit: HST, ESA, NASA

We may all harbour a gene that moves us to explore and find new realms of experience but the physical act of discovery has become far removed from the first principles of physics.

At 6.23 am on Wednesday, when a signal from the New Horizons probe near Pluto reached a giant antenna in Madrid, cheers went up around the world – with their epicentre focused on the Applied Physics Laboratory in Maryland, USA.

And the moment it received the signal, the antenna’s computer also relayed a message through the Internet that updated a webpage showing the world that New Horizons had phoned home. NASA TV was broadcasting a scene of celebration at the APL and Twitter was going berserk as usual. Subtract these instruments of communication and the memory of humankind’s rendezvous with Pluto on the morning of July 15 (IST) is delivered not by the bridge of logic but a leap of faith.

In a memorable article in Nature in 2012, the physicist Daniel Sarewitz made an argument that highlighted the strength and importance of good science communication in building scientific knowledge. Sarewitz contended that it was impossible for anyone but trained theoretical physicists to understand what the Higgs boson really was, how the Higgs mechanism that underpins it worked, or how any of them had been discovered at the Large Hadron Collider earlier that year. The reason, he said, was that a large part of high-energy physics is entirely mathematical, devoid of any physical counterparts, and explores nature in states the human condition could never physically encounter.

As a result, without the full knowledge of the mathematics involved, any lay person’s conviction in the existence of the Higgs boson would be punctured here and there with gaps in knowledge – gaps the person will be continuously ignoring in favour of the faith placed in the integrity of thousands of scientists and engineers working at the LHC, and in the comprehensibility of science writing. In other words, most people on the planet won’t know the Higgs boson exists but they’ll believe it does.

Such modularisation of knowledge – into blocks of information we know exist and other blocks we believe exist – becomes more apparent the greater the interaction with sophisticated technology. And paradoxically, the more we are insulated from it, the easier it is to enjoy its findings.

Consider the example of the Hubble space telescope, rightly called one of the greatest astronomical implements to have ever been devised by humankind.

Its impressive suite of five instruments, highly polished mirrors and advanced housing all enable it to see the universe in visible-to-ultraviolet light in exquisite detail. Its opaque engineering is inaccessible to most but this gap in public knowledge has been compensated many times over by the richness of its observations. In a sense, we no longer concern ourselves with how the telescope works because we have drunk our fill with what it has seen of the universe for us – a vast, multihued space filled with the light of a trillion stars. What Hubble has seen makes us comfortable conflating belief and knowledge.

The farther our gaze strays from home, the more we will become reliant on technology that is beyond the average person’s intellect to comprehend, on rules of physics that are increasingly removed from first principles, on science communication that is able to devise cleverer abstractions. Whether we like it or not, our experience, and memory, of exploration is becoming more belief-ridden.

Like the Hubble, then, has New Horizons entered a phase of transience, too? Not yet. Its Long-Range Reconnaissance Imager has captured spectacular images of Pluto, but none yet quite so spectacular as to mask our reliance on non-human actors to obtain them. We know the probe exists because the method of broadcasting an electromagnetic signal is somewhat easily understood, but then again most of us only believe that the probe is functioning normally. And this will increasingly be the case with the smaller scales we want to explore and the larger distances we want to travel.

Space probes have always been sophisticated bits of equipment but with the Internet – especially when NASA TV, DSN Now and  Twitter are the prioritised channels of worldwide information dissemination – there is a perpetual yet dissonant reminder of our reliance on technology, a reminder of the Voyager Moment of our times being a celebration of technological prowess rather than exploratory zeal.

Our moment was in fact a radio signal reaching Madrid, a barely romantic event. None of this is a lament but only a recognition of the growing discernibility of the gaps in our knowledge, of our isolation by chasms of entangled 1s and 0s from the greatest achievements of our times. To be sure, the ultimate benefactor is science but one that is increasingly built upon a body of evidence that is far too specialised to become something that can be treasured equally by all of us.

Scroll To Top